Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 818
Filtrar
1.
Sci Total Environ ; 927: 172163, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569958

RESUMO

The early growth stage of plants is vital to community diversity and community regeneration. The Janzen-Connell hypothesis predicts that conspecific density dependence lowers the survival of conspecific seedlings by attracting specialist natural enemies, promoting the recruitment and performance of heterospecific neighbors. Recent work has underscored how this conspecific negative density dependence may be mediated by mutualists - such as how mycorrhizal fungi may mediate the accrual of host-specific pathogens beneath the crown of conspecific adult trees. Aboveground mutualist and enemy interactions exist as well, however, and may provide useful insight into density dependence that are as of yet unexplored. Using a long-term seedling demographic dataset in a subtropical forest plot in central China, we confirmed that conspecific neighborhoods had a significant negative effect on seedling survival in this subtropical forest. Furthermore, although we detected more leaf damage in species that were closely related to ants, we found that the presence of ants had significant positive effects on seedling survival. Beside this, we also found a negative effect of ant appearance on seedling growth which may reflect a trade-off between survival and growth. Overall, our findings suggested that ants and conspecific neighborhoods played important but inverse roles on seedling survival and growth. Our results suggest ants may mediate the influence of conspecific negative density dependence on seedling survival at community level.


Assuntos
Formigas , Florestas , Herbivoria , Plântula , China , Animais , Plântula/fisiologia , Formigas/fisiologia , Árvores/fisiologia , Densidade Demográfica , Simbiose
2.
Int Immunopharmacol ; 133: 112122, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663313

RESUMO

Innate lymphoid cells (ILCs), as newly discovered antigen-independent innate immune cells, respond promptly to stimuli by secreting effector cytokines to exert effector functions similar to those of T cells. ILCs predominantly reside at mucosal sites and play critical roles in defending against infections, maintaining mucosal homeostasis, regulating inflammatory and immune responses, and participating in tumorigenesis. Recently, there has been a growing interest in the role of ILCs in oral diseases. This review outlines the classifications and the major characteristics of ILCs, and then comprehensively expatiates the research on ILCs in oral cancer, primary Sjogren's syndrome, periodontal diseases, oral lichen planus, oral candidiasis, Behcet's disease, and pemphigus vulgaris, aiming at summarising the implications of ILCs in oral diseases and providing new ideas for further research.

3.
PeerJ Comput Sci ; 10: e1930, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660168

RESUMO

The objective of document-level relation extraction is to retrieve the relations existing between entities within a document. Currently, deep learning methods have demonstrated superior performance in document-level relation extraction tasks. However, to enhance the model's performance, various methods directly introduce additional modules into the backbone model, which often increases the number of parameters in the overall model. Consequently, deploying these deep models in resource-limited environments presents a challenge. In this article, we introduce a self-distillation framework for document-level relational extraction. We partition the document-level relation extraction model into two distinct modules, namely, the entity embedding representation module and the entity pair embedding representation module. Subsequently, we apply separate distillation techniques to each module to reduce the model's size. In order to evaluate the proposed framework's performance, two benchmark datasets for document-level relation extraction, namely GDA and DocRED are used in this study. The results demonstrate that our model effectively enhances performance and significantly reduces the model's size.

4.
Nano Lett ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626333

RESUMO

The performance of blue quantum dot light-emitting diodes (QLEDs) is limited by unbalanced charge injection, resulting from insufficient holes caused by low mobility or significant energy barriers. Here, we introduce an angular-shaped heteroarene based on cyclopentane[b]thiopyran (C8-SS) to modify the hole transport layer poly-N-vinylcarbazole (PVK), in blue QLEDs. C8-SS exhibits high hole mobility and conductivity due to the π···π and S···π interactions. Introducing C8-SS to PVK significantly enhanced hole mobility, increasing it by 2 orders of magnitude from 2.44 × 10-6 to 1.73 × 10-4 cm2 V-1 s-1. Benefiting from high mobility and conductivity, PVK:C8-SS-based QLEDs exhibit a low turn-on voltage (Von) of 3.2 V. More importantly, the optimized QLEDs achieve a high peak power efficiency (PE) of 7.13 lm/W, which is 2.65 times that of the control QLEDs. The as-proposed interface engineering provides a novel and effective strategy for achieving high-performance blue QLEDs in low-energy consumption lighting applications.

5.
Inflamm Res ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563967

RESUMO

OBJECTIVE: γδ T cells are a distinct subset of unconventional T cells, which link innate and adaptive immunity by secreting cytokines and interacting with other immune cells, thereby modulating immune responses. As the first line of host defense, γδ T cells are essential for mucosal homeostasis and immune surveillance. When abnormally activated or impaired, γδ T cells can contribute to pathogenic processes. Accumulating evidence has revealed substantial impacts of γδ T cells on the pathogenesis of cancers, infections, and immune-inflammatory diseases. γδ T cells exhibit dual roles in cancers, promoting or inhibiting tumor growth, depending on their phenotypes and the clinical stage of cancers. During infections, γδ T cells exert high cytotoxic activity in infectious diseases, which is essential for combating bacterial and viral infections by recognizing foreign antigens and activating other immune cells. γδ T cells are also implicated in the onset and progression of immune-inflammatory diseases. However, the specific involvement and underlying mechanisms of γδ T cells in oral diseases have not been systematically discussed. METHODS: We conducted a systematic literature review using the PubMed/MEDLINE databases to identify and analyze relevant literature on the roles of γδ T cells in oral diseases. RESULTS: The literature review revealed that γδ T cells play a pivotal role in maintaining oral mucosal homeostasis and are involved in the pathogenesis of oral cancers, periodontal diseases, graft-versus-host disease (GVHD), oral lichen planus (OLP), and oral candidiasis. γδ T cells mainly influence various pathophysiological processes, such as anti-tumor activity, eradication of infection, and immune response regulation. CONCLUSION: This review focuses on the involvement of γδ T cells in oral diseases, with a particular emphasis on the main functions and underlying mechanisms by which γδ T cells influence the pathogenesis and progression of these conditions. This review underscores the potential of γδ T cells as therapeutic targets in managing oral health issues.

6.
Chem Commun (Camb) ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650584

RESUMO

A C-H arylation of thiopyran derivatives with aryl halides has been developed. Under the catalysis of Pd(OAc)2/Ag2CO3, the C-H arylation takes place at the α-position of the thiopyran ring. When dibromo-substituted compounds are used as reactants, double C-H arylations may occur on the same thiopyran ring at its α- and ß-positions.

7.
Environ Int ; 187: 108662, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38653130

RESUMO

BACKGROUND: Potential effect of greenspace exposure on human microbiota have been explored by a number of observational and interventional studies, but the results remained mixed. We comprehensively synthesized these studies by performing a systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. METHODS: Comprehensive literature searches in three international databases (PubMed, Embase, and Web of Science) and three Chinese databases (China National Knowledge Infrastructure, Wanfang, and China Biology Medicine disc) were conducted from inception to November 1, 2023. Observational and interventional studies that evaluated associations between greenspace exposure and human microbiota at different anatomical sites were included. Studies were assessed using the National Toxicology Program's office of Health Assessment and Translation risk of bias tool and certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation framework. Two authors independently performed study selection, data extraction, and risk of bias assessment, and evidence grading. Study results were synthesized descriptively. RESULTS: Twenty studies, including 11 observational studies and 9 interventional studies, were finally included into the systematic review. The microbiota of the included studies was from gut (n = 13), skin (n = 10), oral cavity (n = 5), nasal cavity (n = 5) and eyes (n = 1). The majority of studies reported the associations of greenspace exposure with increased diversity (e.g., richness and Shannon index) and/or altered overall composition of human gut (n = 12) and skin microbiota (n = 8), with increases in the relative abundance of probiotics (e.g., Ruminococcaceae) and decreases in the relative abundance of pathogens (e.g., Streptococcus and Escherichia/Shigella). Due to limited number of studies, evidence concerning greenspace and oral, nasal, and ocular microbiota were still inconclusive. CONCLUSION: The current evidence suggests that greenspace exposure may diversify gut and skin microbiota and alter their composition to healthier profiles. These findings would be helpful in uncovering the potential mechanisms underlying greenspace and human health and in promoting a healthier profile of human microbiota.

8.
Nano Lett ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634554

RESUMO

Alloying-type anode materials provide high capacity for lithium-ion batteries; however, they suffer pulverization problems resulting from the volume change during cycling. Realizing the cycling reversibility of these anodes is therefore critical for sustaining their electrochemical performance. Here, we investigate the structural reversibility of Sn NPs during cycling at atomic-level resolution utilizing in situ high-resolution TEM. We observed a surprisingly near-perfect structural reversibility after a complete cycle. A three-step phase transition happens during lithiation, accompanied by the generation of a significant number of defects, grain boundaries, and up to 202% volume expansion. In subsequent delithiation, the volume, morphology, and crystallinity of the Sn NPs were restored to their initial state. Theoretical calculations show that compressive stress drives the removal of vacancies generated within the NPs during delithiation, therefore maintaining their intact morphology. This work demonstrates that removing vacancies during cycling can efficiently improve the structural reversibility of high-capacity anode materials.

9.
Mini Rev Med Chem ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38591197

RESUMO

Fucosylation is facilitated by converting GDP-mannose to GDP-4-keto-6-deoxymannose, which GDP-mannose 4,6-dehydratase, a crucial enzyme in the route, carries out. One of the most prevalent glycosylation alterations linked to cancer has reportedly been identified as fucosylation. There is mounting evidence that GMDS is intimately linked to the onset and spread of cancer. Furthermore, the significance of long-chain non-coding RNAs in the development and metastasis of cancer is becoming more well-recognized, and the regulatory mechanism of lncRNAs has emerged as a prominent area of study in the biological sciences. GMDS-AS1, an antisense RNA of GMDS, was discovered to have the potential to be an oncogene. We have acquired and analyzed relevant data to understand better how GMDS-AS1 and its lncRNA work physiologically and in tumorigenesis and progression. Additionally, we have looked into the possible effects of these molecules on cancer treatment approaches and patient outcomes. The physiological roles and putative processes of GMDS and lncRNA GMDS-AS1 throughout the development and progression of tumors have been assembled and examined. We also examined how these chemicals might affect patient prognosis and cancer therapy approaches. GMDS and GMDS-AS1 were determined to be research subjects by searching and gathering pertinent studies using the PubMed system. The analysis of these research articles demonstrated the close relationship between GMDS and GMDS-AS1 and tumorigenesis and the factors that influence them. GMDS plays a vital role in regulating fucosylation. The related antisense gene GMDS-AS1 affects the biological behaviors of cancer cells through multiple pathways, including the key processes of proliferation, migration, invasion, and apoptosis, providing potential biomarkers and therapeutic targets for cancer treatment and prognosis assessment.

10.
Mol Cell Biochem ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594455

RESUMO

Cardiomyocytes undergo a variety of cell death events during myocardial ischemia‒reperfusion injury (MIRI). Understanding the causes of cardiomyocyte mortality is critical for the prevention and treatment of MIRI. Among the various types of cell death, autosis is a recently identified type of autophagic cell death with distinct morphological and chemical characteristics. Autosis can be attenuated by autophagy inhibitors but not reversed by apoptosis or necrosis inhibitors. In recent years, it has been shown that during the late phase of reperfusion, autosis is activated, which exacerbates myocardial injury. This article describes the characteristics of autosis, autophagic cell death, and the relationship between autophagic cell death and autosis; reviews the mechanism of autosis in MIRI; and discusses its clinical significance.

11.
Mini Rev Med Chem ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38616756

RESUMO

More than 300 membranes make up the SLC family of transporters, utilizing an ion gradient or electrochemical potential difference to move their substrates across biological membranes. The SLC16 gene family contains fourteen members. Proton-linked transportation of monocarboxylates can be promoted by the transporters MCT1, which the SLC16A1 gene family encodes. Glycolysis is constitutively up-regulated in cancer cells, and the amount of lactate produced as a result is correlated with prognosis. Further speaking, SLC16A1 plays an essential role in controlling the growth and spread of tumors, according to mounting evidence. Additionally, LncRNAs are the collective term for all genes that produce RNA transcripts longer than 200 nucleotides but do not convert into proteins. It has steadily developed into a hub for research, offering an innovative approach to tumor study as technology related to molecular biology advances. The growing study has uncovered SLC16A1-AS1, an RNA that acts as an antisense to SLC16A1, which is erroneously expressed in various types of cancers. Therefore, we compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. We compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. Relevant studies were retrieved and collected through the PubMed system. After determining SLC16A1 and SLC16A1-AS1 as the research object, we found a close relationship between SLC16A1 and tumorigenesis as well as the influencing factors through the analysis of the research articles. SLC16A1 regulates lactate chemotaxis while uncovering SLC16A1- as1 as an antisense RNA acting through multiple pathways; they affect the metabolism of tumor cells and have an impact on the prognosis of patients with various cancers.

12.
Heliyon ; 10(7): e28459, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601576

RESUMO

The Uygur medicinal material Mesua ferrea L. has different plant sources in the market. The flower bud of Mammea siamensis T. Anders, which originated from Myanmar and Thailand, is actually used in the dosage room of Uygur hospitals and pharmaceutical enterprises in Xinjiang Region. On the contrary, flowers of Mesua ferrea L. are less frequently used. In this study, the taxonomic characteristics, liquid chromatography-mass spectrometry (LC/MS) and liquid chromatography (HPLC) were used to compare the similarities and differences between the two species. The results showed that the flowers of the two plants were significantly different in morphology, but the similarity of chemical components was high. At the same time, the study also found that Mesua ferrea L. and Mammea siamensis T. Anders contain a large amount of vitexin and isovitexin, which can be used for qualitative and quantitative research. This study provides a reference for the identification, development and utilization of Mesua ferrea L medicinal materials and the revision of quality standards.

13.
Org Lett ; 26(10): 2097-2102, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437523

RESUMO

Transition metal-catalyzed asymmetric hydrogenation possesses unparalleled advantages to prepare chiral amines. Here we reported a novel ligand that combined Josiphos and a spirobiindane scaffold and simultaneously investigated its application in Ir-catalyzed asymmetric hydrogenation for the synthesis of chiral amines. Excellent catalytic activity (5000 TON), high enantioselectivity (up to 99% ee), and broad substrate scope (different C═N substrates) make it highly promising for both academic research and industrial applications.

14.
Org Lett ; 26(15): 3075-3080, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38551214

RESUMO

Mono and double helicenes (M5, M6, D5, and D6) containing six-membered thiopyran rings have been successfully prepared via simultaneous ring expansion and 6-endo cycloisomerizations from the corresponding precursors with five-membered thiophene rings. Although D5 and D6 exhibit similar chemical structures, they demonstrate completely different helical structures because of their distinct steric clashes caused by the incorporated methyl groups. Moreover, all of the thiopyran-fused helicenes exhibit broad absorption bands covering the visible and near-infrared regions.

15.
Mol Immunol ; 169: 10-27, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460474

RESUMO

OBJECTIVE: Primary Sjogren's syndrome (pSS) is an autoimmune disease of the exocrine glands with no specific or efficient treatments. Melatonin, a natural hormone, is revealed to show multiple biological functions, both receptor-dependent and independent effects, including anti-apoptotic, antioxidant, and anti-inflammatory activities. However, the potential mechanism by which melatonin protects salivary glands (SGs) of pSS from damage needs to be clarified. The purpose of current study was to explore the role and receptor-related mechanisms of melatonin in pSS-induced glandular damage. METHODS AND RESULTS: NOD/Ltj mice were used to spontaneously mimic pSS-induced glandular hypofunction in vivo and primary human salivary gland epithelial (HSGE) cells were stimulated by interferon-γ (IFN-γ) to mimic pSS-induced inflammation in SGs cells in vitro. Melatonin-treated mice exhibited a significant reduction in SG injury of NOD/Ltj mice, which was accompanied by an increase in salivary flow rate, a decrease in inflammatory infiltration within the gland, and a suppression of oxidative stress indicators as well as cell apoptosis. Notably, both melatonin membrane receptors and nuclear receptors played an important role in the anti-apoptotic effects of melatonin on the SGs of NOD/Ltj mice. Furthermore, melatonin blocked the IL-6/STAT3 pathway through receptor-dependent manners in IFN-γ-stimulated HSGE cells. However, it was evident that the anti-oxidative and anti-apoptotic properties of melatonin on IFN-γ-stimulated HSGE cells were diminished by IL-6 treatment. CONCLUSION: Melatonin had the potential to mitigate inflammation, oxidative stress, and apoptosis in SGs of pSS by inhibiting the IL-6/STAT3 pathway through receptor-dependent mechanisms. This intervention effectively prevented glandular damage and preserved functional integrity.


Assuntos
Melatonina , Síndrome de Sjogren , Humanos , Camundongos , Animais , Interleucina-6/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Síndrome de Sjogren/tratamento farmacológico , Camundongos Endogâmicos NOD , Glândulas Salivares , Inflamação , Interferon gama/metabolismo , Fator de Transcrição STAT3/metabolismo
16.
J Environ Manage ; 356: 120714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537463

RESUMO

The assembly process of Organic Matter (OM) from single molecules to polymers and the formation process of Ca-CO3 ion-pairs are explored at the micro-scale, and then the relationship between OM and carbonate based on the results of microbially-induced carbonate precipitation (MICP) laboratory experiments is established at the macro-scale. Molecular dynamics (MD) is used to model the assembly of OM (a) in an aqueous solution, (b) on surfaces of calcite (10 1‾ 4) crystals and (c) on defective calcite (101‾ 4) crystal surfaces. From the MICP experiments, carbonate minerals containing abundant OM were precipitated and were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The results of the MD show that OM is assembled into polymers in all three simulation systems. Although the Ca-CO3 ion-pairs and OM were briefly combined, the aggregation assembly of OM molecules and the precipitation of carbonate calcium are not related in the long run. The highly specific surface area of the defective calcite shows an increase in the adsorption of OM. The van der Waals forces, which are primarily responsible for controlling the assembly of OM molecules, increase with the degree of aggregation. According to the MICP experiments, OM is enriched on the mineral surfaces, and more OM is found at the steps of defective crystals with their larger surface areas. Through MD and MICP laboratory experiments, this work systematically describes the interaction of OM and carbonate minerals from the micro to the macro scales, and this provides insight into the interaction between OM and carbonates and biogeochemical processes related to the accumulation of OM in sediments.


Assuntos
Carbonato de Cálcio , Carbonatos , Carbonatos/química , Carbonato de Cálcio/química , Minerais , Adsorção , Polímeros , Precipitação Química
17.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 151-157, 2024 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-38436312

RESUMO

OBJECTIVES: To investigate the differences in visual perception between children with autism spectrum disorder (ASD) and typically developing (TD) children when watching different intention videos, and to explore the feasibility of machine learning algorithms in objectively distinguishing between ASD children and TD children. METHODS: A total of 58 children with ASD and 50 TD children were enrolled and were asked to watch the videos containing joint intention and non-joint intention, and the gaze duration and frequency in different areas of interest were used as original indicators to construct classifier-based models. The models were evaluated in terms of the indicators such as accuracy, sensitivity, and specificity. RESULTS: When using eight common classifiers, including support vector machine, linear discriminant analysis, decision tree, random forest, and K-nearest neighbors (with K values of 1, 3, 5, and 7), based on the original feature indicators, the highest classification accuracy achieved was 81.90%. A feature reconstruction approach with a decision tree classifier was used to further improve the accuracy of classification, and then the model showed the accuracy of 91.43%, the specificity of 89.80%, and the sensitivity of 92.86%, with an area under the receiver operating characteristic curve of 0.909 (P<0.001). CONCLUSIONS: The machine learning model based on eye-tracking data can accurately distinguish ASD children from TD children, which provides a scientific basis for developing rapid and objective ASD screening tools.


Assuntos
Transtorno do Espectro Autista , Criança , Humanos , Transtorno do Espectro Autista/diagnóstico , Tecnologia de Rastreamento Ocular , Intenção , Algoritmos , Aprendizado de Máquina
18.
Curr Pharm Des ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38544395

RESUMO

A 324 bp lncRNA called CASC19 is found on chromosome 8q24.21. Recent research works have revealed that CASC19 is involved in the prognosis of tumors and related to the regulation of the radiation tolerance mechanisms during tumor radiotherapy (RT). This review sheds light on the changes and roles that CASC19 plays in many tumors and diseases, such as nasopharyngeal carcinoma (NPC), cervical cancer, colorectal cancer (CRC), non-small cell lung cancer (NSCLC), clear cell renal cell carcinoma (ccRCC), gastric cancer (GC), pancreatic cancer (PC), hepatocellular carcinoma (HCC), glioma, and osteoarthritis (OA). CASC19 provides a new strategy for targeted therapy, and the regulatory networks of CASC19 expression levels play a key role in the occurrence and development of tumors and diseases. In addition, the expression level of CASC19 has predictive roles in the prognosis of some tumors and diseases, which has major implications for clinical diagnoses and treatments. CASC19 is also unique in that it is a key gene affecting the efficacy of RT in many tumors, and its expression level plays a decisive role in improving the success rate of treatments. Further research is required to determine the precise process by which CASC19 causes changes in diseased cells in some tumors and diseases.

19.
Front Microbiol ; 15: 1345800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435685

RESUMO

Food security is a crucial issue that has caused extensive concern, and the use of food flavors has become prevalent over time. we used the molecular biological techniques, preservative susceptibility testing, viable but non-culturable (VBNC) state induction testing, and a transcriptome analysis to examine the bacterial contamination of favored syrup and identify the causes and develop effective control measures. The results showed that Asaia lannensis WLS1-1 is a microorganism that can spoil food and is a member of the acetic acid bacteria families. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests showed that WLS1-1 was susceptible to potassium sorbate (PS), sodium benzoate (SB), and sodium sulffte (SS) at pH 4.0. It revealed a progressive increase in resistance to these preservatives at increasing pH values. WLS1-1 was resistant to PS, SB and SS with an MIC of 4.0, 2.0 and 0.5 g/L at pH 5.0, respectively. The MIC values exceed the maximum permissible concentrations that can be added. The induction test of the VBNC state demonstrated that WLS1-1 lost its ability to grow after 321 days of PS induction, 229 days of SB induction and 52 days of SS induction combined with low temperature at 4°C. Additionally, laser confocal microscopy and a propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assay showed that WLS1-1 was still alive after VBNC formation. There were 7.192 ± 0.081 (PS), 5.416 ± 0.149 (SB) and 2.837 ± 0.134 (SS) log10(CFU/mL) of viable bacteria. An analysis of the transcriptome data suggests that Asaia lannensis can enter the VBNC state by regulating oxidative stress and decreasing protein synthesis and metabolic activity in response to low temperature and preservatives. The relative resistance of Asaia lannensis to preservatives and the induction of the VBNC state by preservatives are the primary factors that contribute to the contamination of favored syrup by this bacterium. To our knowledge, this study represents the first evidence of the ability of Asaia lannensis to enter the VBNC state and provides a theoretical foundation for the control of organisms with similar types of activity.

20.
J Org Chem ; 89(7): 4523-4529, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38502930

RESUMO

Three new donor-acceptor-donor (D-A-D) architecture regioisomers comprising a large planar electron-withdrawing core tribenzo[a,c,i]phenazine and two identical electron-donating triphenylamines with different substitution patterns were designed and synthesized. Employing this regioisomerization strategy, the intramolecular charge-transfer interactions are effectively tuned and result in a significant bathochromic shift of photoluminescence maximum over 100 nm, which induces the corresponding emission band extending into the near-infrared region as well as giving a high solid-state quantum yield of 25%. Meanwhile, it is found that the supramolecular interactions of this series of regioisomers with planar electron-donor pyrene are greatly affected by the substitution pattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...